The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Heng WANG(70hit)

61-70hit(70hit)

  • Threshold Based D-SCFlip Decoding of Polar Codes

    Desheng WANG  Jihang YIN  Yonggang XU  Xuan YANG  Gang HUA  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2023/02/06
      Vol:
    E106-B No:8
      Page(s):
    635-644

    The decoders, which improve the error-correction performance by finding and correcting the error bits caused by channel noise, are a hotspot for polar codes. In this paper, we present a threshold based D-SCFlip (TD-SCFlip) decoder with two improvements based on the D-SCFlip decoder. First, we propose the LLR fidelity criterion to define the LLR threshold and investigate confidence probability to calculate the LLR threshold indirectly. The information bits whose LLR values are smaller than the LLR threshold will be excluded from the range of candidate bits, which reduces the complexity of constructing the flip-bits list without the loss of error-correction performance. Second, we improve the calculation method for flip-bits metric with two perturbation parameters, which locates the channel-induced error bits faster, thus improving the error-correction performance. Then, TD-SCFlip-ω decoder is also proposed, which is limited to correcting up to ω bits in each extra decoding attempt. Simulation results show that the TD-SCFlip decoding is slightly better than the D-SCFlip decoding in terms of error-correction performance and decoding complexity, while the error-correction performance of TD-SCFlip-ω decoding is comparable to that of D-SCFlip-ω decoding but with lower decoding complexity.

  • Multi-Service MIMO Broadcasting with Different Receive Antennas

    Ruifeng MA  Zhaocheng WANG  Zhixing YANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E97-A No:9
      Page(s):
    1994-1997

    The next generation wireless broadcasting systems combining with MIMO technology has drawn much attention recently. Considering the coexistence of receivers equipped with different numbers of antennas in these systems, there exists the special requirement to maximize the transmission rate for receivers having more antennas, while guaranteeing the normal rate for receivers having less antennas. In this letter, superposition coding is proposed to fulfill this requirement and the concept of broadcast cluster is introduced, wherein the optimized power allocation parameters are derived. The BER simulations for multiple services are provided to verify the significant SNR performance gap between receivers with various numbers of receive antennas.

  • Non-recursive Discrete Periodized Wavelet Transform Using Segment Accumulation Algorithm and Reversible Round-Off Approach

    Chin-Feng TSAI  Huan-Sheng WANG  King-Chu HUNG  Shih-Chang HSIA  

     
    PAPER-VLSI Systems

      Vol:
    E91-D No:11
      Page(s):
    2666-2674

    Wavelet-based features with simplicity and high efficacy have been used in many pattern recognition (PR) applications. These features are usually generated from the wavelet coefficients of coarse levels (i.e., high octaves) in the discrete periodized wavelet transform (DPWT). In this paper, a new 1-D non-recursive DPWT (NRDPWT) is presented for real-time high octave decomposition. The new 1-D NRDPWT referred to as the 1-D RRO-NRDPWT can overcome the word-length-growth (WLG) effect based on two strategies, resisting error propagation and applying a reversible round-off linear transformation (RROLT) theorem. Finite precision performance analysis is also taken to study the word length suppression efficiency and the feature efficacy in breast lesion classification on ultrasonic images. For the realization of high octave decomposition, a segment accumulation algorithm (SAA) is also presented. The SAA is a new folding technique that can reduce multipliers and adders dramatically without the cost of increasing latency.

  • The Organization of On-Chip Data Memory in One Coarse-Grained Reconfigurable Architecture

    Yansheng WANG  Leibo LIU  Shouyi YIN  Min ZHU  Peng CAO  Jun YANG  Shaojun WEI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E96-A No:11
      Page(s):
    2218-2229

    RCP (Reconfigurable Computing Processor) is intended to fill the gap between ASIC and GPP (General Purpose processor), which achieves much higher energy efficiency than GPP, while is much more flexible than ASIC. In this paper, one organization of on-chip data memory called LIBODM (LIfetime Based On-chip Data Memory) is proposed to reduce the reference delay for data and on-chip data memory size in RCP. In the LIBODM, the allocation of data is based on the data dependency. The data with low data dependency are stored off-chip to save the storage costs, while the data with high data dependency are stored on-chip to reduce the reference delay. Besides, in the LIBODM, the on-chip data are classified into two types, and the classification is based on the lifetime of data. For short lifetime data, they are preferred to be stored into FIFO to increase the reuse ratio of memory space naturally. For long lifetime data, they are preferred to be stored into RAM for several time references. The LIBODM has been testified in one CGRA (Coarse Grained Reconfigurable Architecture) called RPU (Reconfigurable Processing Unit), and two RPUs has been integrated in a RCP-REMUS_HP (High Performance version of Reconfigurable MUlti-media System) focused on video decoding. Thanks to the LIBODM, although the size of on-chip data memory in REMUS_HP is small, a high performance can still be achieved. Compared with XPP and ADRES, in REMUS_HP, the on-chip data memory size at same performance level is only 23.9% and 14.8%. REMUS_HP is implemented on a 48.9mm2 silicon with TSMC 65nm technology. Simulation shows that 1920*1088 @30fps can be achieved for H.264 high-profile decoding when exploiting a 200MHz working frequency. Compared with the high performance version of XPP, the performance is 150% boosted, while the energy efficiency is 17.59x boosted.

  • Fast Recovery and Low Cost Coexist: When Continuous Data Protection Meets the Cloud

    Yu GU  Chuanyi LIU  Dongsheng WANG  

     
    PAPER

      Vol:
    E97-D No:7
      Page(s):
    1700-1708

    Cloud computing has rising as a new popular service paradigm with typical advantages as ease of use, unlimited resources and pay-as-you-go pricing model. Cloud resources are more flexible and cost-effective than private or colocation resources thus more suitable for storing the outdated backup data that are infrequently accessed by continuous data protection (CDP) systems. However, the cloud achieves low cost at the same time may slow down the recovery procedure due to its low bandwidth and high latency. In this paper, a novel block-level CDP system architecture: MYCDP is proposed to utilize cloud resources as the back-end storage. Unlike traditional delta-encoding based CDP approaches which should traverse all the dependent versions and decode the recovery point, MYCDP adopts data deduplication mechanism to eliminate data redundancy between all versions of all blocks, and constructs a version index for all versions of the protected storage, thus it can use a query-and-fetch process to recover version data. And with a specific version index data structure and a disk/memory hybrid cache module, MYCDP reduces the storage space consumption and data transfer between local and cloud. It also supports deletion of arbitrary versions without risk of invalidating some other versions. Experimental results demonstrate that MYCDP can achieve much lower cost than traditional local based CDP approaches, while remaining almost the same recovery speed with the local based deduplication approach for most recovery cases. Furthermore, MYCDP can obtain both faster recovery and lower cost than cloud based delta-encoding CDP approaches for any recovery points. And MYCDP gets more profits while protecting multiple systems together.

  • Efficient Multi-Service Allocation for Digital Terrestrial Broadcasting Systems

    Bo HAO  Jun WANG  Zhaocheng WANG  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E97-B No:9
      Page(s):
    1977-1983

    This paper presents an efficient multi-service allocation scheme for the digital television terrestrial broadcasting systems in which the fixed service is modulated by orthogonal frequency division multiplexing and quadrature amplitude modulation (OFDM/QAM) with larger FFT size and the added mobile service is modulated by OFDM and offset quadrature amplitude modulation (OQAM) with smaller FFT size. The two different types of services share one 8MHz broadcasting channel. The isotropic orthogonal transform algorithm (IOTA) is chosen as the shaping filter for OQAM because of its isotropic convergence in time and frequency domain and the proper FFT size is selected to maximum the transmission capacity under mobile environment. The corresponding transceiver architecture is also proposed and analyzed. Simulations show that the newly added mobile service generates much less out-of-band interference to the fixed service and has a better performance under fast fading wireless channels.

  • Spatio-Temporal Prediction Based Algorithm for Parallel Improvement of HEVC

    Xiantao JIANG  Tian SONG  Takashi SHIMAMOTO  Wen SHI  Lisheng WANG  

     
    PAPER

      Vol:
    E98-A No:11
      Page(s):
    2229-2237

    The next generation high efficiency video coding (HEVC) standard achieves high performance by extending the encoding block to 64×64. There are some parallel tools to improve the efficiency for encoder and decoder. However, owing to the dependence of the current prediction block and surrounding block, parallel processing at CU level and Sub-CU level are hard to achieve. In this paper, focusing on the spatial motion vector prediction (SMVP) and temporal motion vector prediction (TMVP), parallel improvement for spatio-temporal prediction algorithms are presented, which can remove the dependency between prediction coding units and neighboring coding units. Using this proposal, it is convenient to process motion estimation in parallel, which is suitable for different parallel platforms such as multi-core platform, compute unified device architecture (CUDA) and so on. The simulation experiment results demonstrate that based on HM12.0 test model for different test sequences, the proposed algorithm can improve the advanced motion vector prediction with only 0.01% BD-rate increase that result is better than previous work, and the BDPSNR is almost the same as the HEVC reference software.

  • ECG-Based Heartbeat Classification Using Two-Level Convolutional Neural Network and RR Interval Difference

    Yande XIANG  Jiahui LUO  Taotao ZHU  Sheng WANG  Xiaoyan XIANG  Jianyi MENG  

     
    PAPER-Biological Engineering

      Pubricized:
    2018/01/12
      Vol:
    E101-D No:4
      Page(s):
    1189-1198

    Arrhythmia classification based on electrocardiogram (ECG) is crucial in automatic cardiovascular disease diagnosis. The classification methods used in the current practice largely depend on hand-crafted manual features. However, extracting hand-crafted manual features may introduce significant computational complexity, especially in the transform domains. In this study, an accurate method for patient-specific ECG beat classification is proposed, which adopts morphological features and timing information. As to the morphological features of heartbeat, an attention-based two-level 1-D CNN is incorporated in the proposed method to extract different grained features automatically by focusing on various parts of a heartbeat. As to the timing information, the difference between previous and post RR intervels is computed as a dynamic feature. Both the extracted morphological features and the interval difference are used by multi-layer perceptron (MLP) for classifing ECG signals. In addition, to reduce memory storage of ECG data and denoise to some extent, an adaptive heartbeat normalization technique is adopted which includes amplitude unification, resolution modification, and signal difference. Based on the MIT-BIH arrhythmia database, the proposed classification method achieved sensitivity Sen=93.4% and positive predictivity Ppr=94.9% in ventricular ectopic beat (VEB) detection, sensitivity Sen=86.3% and positive predictivity Ppr=80.0% in supraventricular ectopic beat (SVEB) detection, and overall accuracy OA=97.8% under 6-bit ECG signal resolution. Compared with the state-of-the-art automatic ECG classification methods, these results show that the proposed method acquires comparable accuracy of heartbeat classification though ECG signals are represented by lower resolution.

  • Improved Just Noticeable Difference Model Based Algorithm for Fast CU Partition in V-PCC Open Access

    Zhi LIU  Heng WANG  Yuan LI  Hongyun LU  Hongyuan JING  Mengmeng ZHANG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2024/04/05
      Vol:
    E107-D No:8
      Page(s):
    1101-1104

    In video-based point cloud compression (V-PCC), the partitioning of the Coding Unit (CU) has ultra-high computational complexity. Just Noticeable Difference Model (JND) is an effective metric to guide this process. However, in this paper, it is found that the performance of traditional JND model is degraded in V-PCC. For the attribute video, due to the pixel-filling operation, the capability of brightness perception is reduced for the JND model. For the geometric video, due to the depth filling operation, the capability of depth perception is degraded in the boundary area for depth based JND models (JNDD). In this paper, a joint JND model (J_JND) is proposed for the attribute video to improve the brightness perception capacity, and an occupancy map guided JNDD model (O_JNDD) is proposed for the geometric video to improve the depth difference estimation accuracy of the boundaries. Based on the two improved JND models, a fast V-PCC Coding Unit (CU) partitioning algorithm is proposed with adaptive CU depth prediction. The experimental results show that the proposed algorithm eliminates 27.46% of total coding time at the cost of only 0.36% and 0.75% Bjontegaard Delta rate increment under the geometry Point-to-Point (D1) error and attribute Luma Peak-signal-Noise-Ratio (PSNR), respectively.

  • Pilot Design and Channel Estimation for TDS-OFDM System with Transmit Diversity

    Linglong DAI  Jintao WANG  Zhaocheng WANG  Jun WANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:3
      Page(s):
    852-855

    To realize transmit diversity for the time domain synchronous OFDM (TDS-OFDM) system, this letter proposes the space-time-frequency orthogonal training sequence and the corresponding flexible channel estimation methods. Simulation results indicate that an significant performance improvement could be achieved for low-density parity-check code (LDPC) coded TDS-OFDM system over multi-path fading channels.

61-70hit(70hit)